
WEIGHT: 46 kg
Breast: Large
1 HOUR:140$
Overnight: +30$
Services: Massage prostate, Fisting vaginal, Deep throating, Disabled Clients, Deep Throat
Thank you for visiting nature. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser or turn off compatibility mode in Internet Explorer.
In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of fecal samples were analyzed by 16S rRNA gene sequencing from the Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa.
Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses.
Finally, fecal microbiota transplantation FMT in mice were conducted to illustrate the potential beneficial effects of core bacteria. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium , might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut.
The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium -dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.